
 

Quantum Channels DifferentRepresentations

Recap Last weekfocussed on the Kraus representation
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This week will cover two other representations

Stinespring Dilation

The choi representation

Stinespring Dilation

Interacting
a system and an environment s the ignoring the

environment tracing it out induces artful on the

systems we saw this in mathematicsproblemsheet

eg Suppose we start with Ps o lo Cole
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This is known as the Dephasing channel

It kills off coherence turning a quantum
state into a classical mixture

If C O Es p s 12 we end up witha perfect classical mixture is ie the completely dephins
chord we saw last time

Systemacting wit measurement environment such that environment
is mapped to orthogonaloutput states leads to lossof coherence

Decoherence



But the converse is also true

Similarly to how tracing out part of an entangled state
lead to a mixed state

any muted state can bepurified into a part of a
larger entangled system

Any quantumchannel can be written in terms of a unitary
acting on an enlarged system
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Stine spring's DilationTheorem again

Anyquantum channel can be written in theform
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The Choi Representation

First introduce the notion of vectorisation a
simplebutpowerful
trick
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OneYohe reasons vectorization is useful is becauseofthe
following identity

Central Vectorization Identity
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Ok so why is this useful

One reason it's useful is we can use it to show
that

Super useful identity
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This trick can be used to reduce circuit depths
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Choi Jamiolkowski Representation

For
any quantum channel E we define the

Choi state associated to the channel as
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The Choi state wifely'Éspecifies thequartan
channel If E has Kraus representation
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Examples completely
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What's the point in the Choi Representation

Often ends up being easier mathematically computationally
to work in terms of States rather than channels

eg in algorithms for learning simulating channels

It provides a wayoffinding the
Kraus operators

for a channel
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2 differentpossiblechoices in Kraus operators

Option I
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GeneralRecipeforfinding Kraus Operators
Take E and compute JLE

2 Farid eigendecomposition of JC E

JL Euxalenced
Find the matrix Are such that

I Veel An Elen

4 The matrices An are the smallest setof
Kraus operators for

Unitary miningfreedom in Kraus representation

We saw above s previously that multiple setsof
Kraus operators can be used to describe the same

channel This can be understood within the

Choi representation

We have J E s I Vee Ai veelaill

but remember this is just a state s we can write

it in its eegendecomposition or just as an



ensemble decomposition
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elementsof a unitary
isometry
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DifferentpossiblesetsofKraus operators
are relatedby unitary

isometric mixing


